The University of Tokushima (2011)⟩ Graduate School of Advanced Technology and Science⟩ Electrical and Electronic Engineering (Master) [⇒Japanese]

	Yutaka Kishimoto · Professor / Optical Materials and Devices, Optical Systems Engineering, Systems Innovation Engineering
arget) To understand basics and recent developments in superconductivity.	
utline > This class reviews quantum mechanics and introduces superconductivity and recent superconducting materials.	
yle > Lecture	
eyword superconductivity, Cooper pair, superconducting energy gap, density of states, anisotropic superconductivity	
oal) To understand the outline of superconductivity.	
chedule	
1. Introduction to superconductivity	
2. Review of quantum mechanics (1), Schrödinger equation and wave function	
3. Review of quantum mechanics (2), operators and expected values	
4. Review of quantum mechanics (3), perturbation theory	
5. Free electron model of metals	
6. Phenomenological theory of superconductivity	
7. To understand Meissner effect on the basis of quantum mechanics	
8. Formation of Cooper pair	
9. Formation of superconducting energy gap	
10. Density of states, and energy gap at finite temperatures	
11. Introduction to Nuclear Magnetic Resonance method	
12. Frontier of superconductivity (1), strong coupling superconductor	
13. Frontier of superconductivity (2), heavy Fermion superconductor	
14. Frontier of superconductivity (3), copper oxide high Tc superconductor 15. Summary	
•	
valuation Criteria Reports on several subjects in the class.	
extbook To be introduced in the class.	
eference To be introduced in the class.	
ontents> http://cms.db.tokushima-u.ac.jp/cgi-bin/toURL?EID=218254	
ontact>	

⇒ Kishimoto (A202, +81-88-656-7548, yutaka@pm.tokushima-u.ac.jp) MaiL (Office Hour: 金曜日 16:00-17:30)