Superconductivity and superconducting materials

2 units (selection)

Yutaka Kishimoto · Professor / Optical Materials and Devices, Optical Systems Engineering, Systems Innovation Engineering

Target To understand basics and recent developments in superconductivity.

Outline) This class reviews quantum mechanics and introduces superconductivity and recent superconducting materials.

Style \ Lecture

Keyword\(\rightarrow\) superconductivity, Cooper pair, superconducting energy gap, density of states, anisotropic superconductivity

Goal) To understand the outline of superconductivity.

Schedule>

- 1. Introduction to superconductivity
- 2. Review of quantum mechanics (1), Schrödinger equation and wave function
- 3. Review of quantum mechanics (2), operators and expected values
- **4.** Review of quantum mechanics (3), perturbation theory
- **5.** Free electron model of metals
- 6. Phenomenological theory of superconductivity
- 7. To understand Meissner effect on the basis of quantum mechanics
- 8. Formation of Cooper pair
- 9. Formation of superconducting energy gap
- 10. Density of states, and energy gap at finite temperatures
- 11. Introduction to Nuclear Magnetic Resonance method
- 12. Frontier of superconductivity (1), strong coupling superconductor
- 13. Frontier of superconductivity (2), heavy Fermion superconductor
- 14. Frontier of superconductivity (3), copper oxide high Tc superconductor
- 15. Summary

Evaluation Criteria\rangle Reports on several subjects in the class.

Textbook> To be introduced in the class.

Reference) To be introduced in the class.

Contents http://cms.db.tokushima-u.ac.jp/cgi-bin/toURL?EID=216769

Contact>

⇒ Yutaka Kishimoto (A202)