Radio Frequency Solid State Physics

2 units (selection)

Koichi Nakamura · Associate Professor / Production Systems Engineering, Mechanical Engineering, Intelligent Structures and Mechanics Systems Engineering

Target) This class introduces basis of NMR and applications to studies on superconductivity, magnetism and ionic diffusion in solid.

Outline> The spectrum, spin-lattice relaxation, spin-spin relaxation, chemical shift etc., which are obtained by NMR measurements, are introduced and discussed in connection with various physical properties of solids.

Keyword) nuclear magnetic resonance, magnetism, diffusion

Goal

- 1. To understand basis of NMR.
- **2.** To understand relationship between various problems in solid state physics and relaxation phenomena observed using NMR.

Schedule>

- 1. Introduction to nuclear magnetic resonance (NMR)
- 2. Zeeman interaction
- 3. Larmor precession
- 4. Magnetization
- 5. Motion of magnetization under magnetic field
- **6.** Bloch equations
- 7. Dipole interaction
- 8. Magnetic interactions of nuclei with electrons
- **9.** Electric quadrupole interaction
- 10. Spin-lattice relazation and motional narrowing of resonance lines
- 11. Diffusion in solid and spin-lattice relaxation
- 12. Relaxation model for diffusion
- 13. NMR studies on lithium ionic conductors
- 14. NMR studies on protonic conductors
- **15.** Application of NMR

Evaluation Criteria Assignments count 100%.

Reference) To be introduced in the class

Contents http://cms.db.tokushima-u.ac.jp/cgi-bin/toURL?EID=216788

Contact>

⇒ Nakamura (A216, koichi@pm.tokushima-u.ac.jp) MalL