Engineering of Correlated Electron Matter

Target> Lecture would be given on the basic concept of magnetism and superconductivity in condensed matter with an introductory talk on strongly correlated electron system and its application to technology.

Outline> Some materials with strongly correlated electrons show interesting magnetic and electronic phenomenon such as high-transition temperature superconductivity, metal-insulator transition and giant magneto-resistance. After an introductory talk on the strongly correlated electron system and its application to technology, lecture would be given on the basic concept of magnetism and superconductivity in condensed matter.

Keyword > strongly correlated electron system, magnetism, superconductivity

- Notice> 授業を受ける際には、2 時間の授業時間毎に2 時間の予習と2 時 間の 復習をしたうえで授業を受けることが、授業の理解と単位取得のために 必要 である.
- **Goal** \rangle To understand the basic concept of magnetism and superconductivity in **Schedule** \rangle
 - 1. Correlated electron matters
 - **2.** Introduction to magnetism
 - **3.** Electronic states of atoms
 - 4. Magnetic ions in crystal
 - 5. Magnetic interaction
 - 6. Local-moment magnetism 1
 - 7. Local-moment magnetism 2
 - 8. Itinerant-electron magnetism
 - 9. Ferromagnet and its application to technology
- 10. Superconducting phenomenology
- **11.** Electron-phonon interaction
- 12. Magnetic ux quantum and SQUID
- 13. Type II superconductor
- 14. New type of superconductivity
- 15. Manganese oxide and spintronics
- **16.** Examination
- **Evaluation Criteria** Examination

 $\textbf{Textbook}\rangle$ no specific text

Yu Kawasaki · Associate Professor / Material and Device Science, Electrical and Electronic Engineering, Systems Innovation Engineering

Contents http://cms.db.tokushima-u.ac.jp/cgi-bin/toURL?EID=218253 Contact

 \Rightarrow Kawasaki (A217, +81-88-656-9878, yu@pm.tokushima-u.ac.jp) Mail

2 units (selection)