Bioprocess Engineering

2 units (selection)

YOShihisa Suzuki · Associate Professor / Physicochermistry and Material Science, Chemical Science and Technology, Earth and Life Environmental Engineering

Target) This class introduces basic concepts and methods of protein crystallization.

Outline) Basic concepts, methods and recent developments of protein crystallization.

Style> Lecture

Keyword crystal growth, protein

Fundamental Lecture "Basic Physical Chemistry" (1.0)

Relational Lecture "Advanced Physical Chemistry" (0.5)

Requirement Students are required to have a good understanding of master course-level biochemical and biophysical sciences.

Goal) To understand the growth mechanisms of protein crystals

Schedule>

- 1. Structure analysis of protein molecules
- 2. Significance of protein crystallization
- **3.** Fundamentals of crystal growth I : Solubility
- 4. Fundamentals of crystal growth II: Nucleation
- 5. Fundamentals of crystal growth III: Growth & Dissolution
- 6. Fundamentals of crystal growth IV: Characterization
- 7. Solubility of protein crystals
- **8.** Nucleation of protein crystals
- 9. Growth of protein crystals
- 10. Surface morphologies of protein crystals
- 11. High pressure crystallization of protein molecules
- 12. Polymorphism of protein crystals
- 13. High pressure crystallography of protein molecules
- 14. Activation energy of the incorporation of protein molecules into crystals
- 15. Activation volume of the incorporation of protein molecules into crystals

Evaluation Criteria Assignment counts 100%.

Textbook⟩ To be anounced in the class

Reference) To be anounced in the class

Contents http://cms.db.tokushima-u.ac.jp/cgi-bin/toURL?EID=216733

Contact>

⇒ Suzuki (G514, +81-88-656-7415, suzuki@chem.tokushima-u.ac.jp) MalL